
TextPlan integration guide

1/11

Contents
Introduction .. 2

Importing XML and Excel data .. 2

Direct integration with your system ... 3

Prepopulate a TextPlan form with data .. 3

Request TextPlan to generate and return a document .. 5

Data collection: send entered form data to your own web service ... 8

Test code ... 10

TextPlan integration guide

2/11

Introduction
There are various ways in which you can integrate TextPlan with your existing systems, depending on your needs.

These are the main scenarios:

 To load data from your system into a TextPlan form you have the following options:

o Open a form in TextPlan and load one or data models that your system exported (or you created

manually) in either XML or Excel format, either from a file on your file system or from the TextPlan

database. In the latter case an administrator must first import the data model(s) into TextPlan.

o Your system can open a TextPlan form in the browser using an HTTP-post request, specifying some or all

of the data to prepopulate the form with in the post data. The user can then change and add data and

then generate a document as normal.

 To export TextPlan form data to your system you have the following options:

o You can add a “Send” button to your form that sends the entered data, possibly along with a generated

PDF document, to your own web service.

o An administrator can export the currently entered data either in XML or Excel format. The main use of

this functionality is to provide you with an example of the XML or Excel format that you can use to

import data into TextPlan.

 If you want to use TextPlan solely to generate a document based on data that you provide, i.e. use it as a web

service, you can request it to generate and return a document with the data that you supply.

Importing XML and Excel data
An XML or Excel file that can be imported into TextPlan contains one or more data model sets, each of which contains

one or more data model, each of which contains a set of input values that can be loaded into a form’s fields.

The simplest way to understand the format is to export a form’s currently entered data as either an XML or Excel file. An

administrator can do this using the “Export” menu item on the “Admin functions” menu of a form’s data entry page. The

exported Excel file will contain remarks for all relevant cells explaining the various formats and possibilities.

If you have an XML or Excel file in the correct format, a user can load its content using the “Load” menu item on the

“Options” menu (option “Load from file”).

 If the file contains only one data model, that model is loaded immediately.

 If the file contains one data model set with multiple data models, a panel appears from which the user can

select a data model to load. Note that a data model can contain data for some or all fields. So one model could

e.g. be used for customer data and another for product data.

 If the file contains multiple data model sets, a panel appears from which the user can select the data model set

to use, after which he can select the data model to load.

An administrator can also import an XML or Excel file’s content in the TextPlan database, using the “Import” menu item

on the “Admin functions” menu. This will store the data model set(s) in the TextPlan database, from which he and other

users (if it is shared) can load it (also using the “Load” menu item on the “Options” menu).

TextPlan integration guide

3/11

Direct integration with your system
If you want to start or use TextPlan directly from your system, you have two options:

 You can open a TextPlan form in the browser using an HTTP-post request, specifying the data to prepopulate the

form with in the post data. The user can then change and add data and then generate a document as normal.

 You can use TextPlan as a web service, by requesting to generate and return a document with the data that you

supply.

In both scenario’s you need to tell TextPlan to which text blocks and variables the specified data applies. This can be

done in two ways:

 A text block or variable has an “original name”. This is the text that was highlighted in the template document.

Note that although initially form fields have the same display name as the “original name”, these names can be

changed on the form configuration page for display purposes.

 Each text block and variable is also assigned a unique ID by TextPlan.

When identifying a text block or variable, you can use either the original name or the TextPlan ID. Note that 2 text blocks

or variables can have the same original name, but they will always have different IDs. So if you use duplicate original

names in your template document, it is better to use the ID, since you can’t specify a value for the second text block or

variable using the duplicate original name. If both the ID and the original name are specified, the ID is used.

For variables in repeatable text blocks, the ID must be followed by an instance index. ”variableId:0” specifies the first

instance of the variable, ”variableId:1” specifies the second instance, and so on. Variables in repeatable text blocks

cannot be specified by using the original name.

A text block is “repeatable” if it can occur more than once in the generated document. This is configured on the form’s

configuration page.

The simplest way to see all IDs and original names used in a form is to export the form to either an XML or Excel file. You

can do this on the data entry page, by selecting “Export” from the “Admin functions” menu.

Prepopulate a TextPlan form with data
A TextPlan form can be opened in two ways by using an HTTP GET request:

 By specifying its ID. For this to work, the user must be logged in to TextPlan and have access to the form.

The URL in the browser is “https://my.textplan.com/Create/Form/<id>”.

 By specifying its public GUID. By using the public GUID, the user does not have to log in to TextPlan to use the

form. A form’s GUID is shown on the form’s management page.

The URL in the browser is “https://my.textplan.com/Create/Form?guid=<guid>”.

If you want to pass form data to the request, you should use an HTTP POST request, where either the ID or the GUID is

specified as post data, along with the other fields.

Using the URL “https://my.textplan.com/Create/Form” you can pass the following post data:

 userData – required. A string containing the form data in JSON format. The format is explained below.

 test - optional. If true, the page is opened with test mode set to on. Default is false.

TextPlan integration guide

4/11

 locale - optional. If specified, this locale will be used for the form’s user interface (not for the formatting of

data), if supported. A locale specifies a language and a country, e.g. “en_US” for US English.

Aside from these parameters, you must either specify the form’s ID or GUID.

If you specify the GUID, pass these parameters:

 guid - required. The form’s GUID.

If you specify the ID, pass these parameters:

 id - required. The form’s ID.

 login - required (except when the user is already logged in in the browser). The login/email address of a user

with access to the form.

 password - required (except when the user is already logged in in the browser). The password of the user.

Note: if you specify an ID and login, the user is logged in with the specified credentials and can do all the same things as

if he logged in manually. If you use the GUID method, the user only has access to this form, just like any anonymous user

with access to the public link.

The data model

The data model to pass as value of the userData parameter is a string containing some or all of the form data in JSON

format.

The data model specifies for zero or more text blocks whether they are used or not, and for zero or more variables their

(textual) value. This data is processed as if the user entered it himself in the form’s user interface, in the order as

specified, so it should be in a valid input format, not the output format to use in the generated document.

You decide yourself how to build the JSON string. In order to define the format we use the following C# classes:

public class UserData

{

 public TextBlockData[] TextBlocks;

 public VariableData[] Variables;

}

public class TextBlockData

{

 public string Id; // Specify either 'Id' or 'Name'.

 public string Name; // Specify either 'Id' or 'Name'.

 public bool Used;

 public int NrInstances;

}

public class VariableData

{

 public string Id; // Specify either 'Id' or 'Name'.

 public string Name; // Specify either 'Id' or 'Name'.

 public int Type; // Optional.

 public string Value;// Text input for the form field.

}

TextPlan integration guide

5/11

You should either specify the 'Id' or the 'Name'. If both are specified, 'Id' is used.

For a text block the ‘Used’ property is true if this text block is used ("on") and false if it's not. The default value is true.

A text block’s ‘NrInstances’ property must be set to a value >= 0 for repeatable text blocks, i.e. text blocks that can occur

more than once in the generated document. Whether a text block is repeatable or not is configured on the form

configuration page (by default a text block is not). For not-repeatable text blocks this value must be set to -1, which is

the default.

If a value > 0 is specified, i.e. if the text block is repeatable, all IDs of this text block’s variables must be specified as

variableId:InstanceIndex, where instanceIndex is a value >= 0.

Optionally, you can specify a variable’s 'Type', as an integrity check. If specified, the 'Value' is only taken over if the

variable is configured to have the same type. Supported types are:

 0: Any (don’t check, this is the default)

 1: Text

 2: Number

 3: Date

 4: Choice

 11: Boolean (Yes or no)

The userData parameter is a serialized JSON string of an object of type UserData.

An example of a JSON data model is the following:

{

 'TextBlocks' : [

 { 'Id' : '1', 'Used' : 'true' },

 { 'Id' : '2', 'Used' : 'false', },

 { 'Name' : 'TextBlock3', 'Used' : 'true' }

],

 'Variables' : [

 { 'Id' : '1', 'Value' : 'value1' },

 { 'Name' : 'Variable2', 'Value' : 'Value2' }

]

}

The JSON string of this data model is:

"{'TextBlocks':[{'Id':'1','Used':'true'},{'Id':'2','Used':'false'},{'Name':'TextBlo

ck3','Used':'true'}],'Variables':[{'Id':'1','Value':'value1'},{'Name':'Variable2','

Value':'Value2}]}"

Request TextPlan to generate and return a document

You can use TextPlan as a web service, by requesting to generate and return a document with the data you supply.

To do this, send an HTTP POST request to the URL “https://my.textplan.com/Create/ GenerateOutputDocument” and

specify the following post data:

 dataModel - required. A string containing the data model in JSON format. The format is explained below.

TextPlan integration guide

6/11

 test - optional. If true, a test document is created (with a TextPlan watermark). Default is false.

 format - the type of document to generate. Supported types are:

o 10: Doc (Word 2003)

o 20: Docx

o 30: RTF

o 40: PDF

o 60: ODT

o 70: Text

o 104: JPeg

Aside from these parameters, you must either specify the form’s ID or GUID.

If you specify the GUID, pass these parameters:

 guid - required. The form’s GUID.

If you specify the ID, pass these parameters:

 id - required. The form’s ID.

 login - required (except when the user is already logged in in the browser). The login/email address of a user

with access to the form.

 password - required (except when the user is already logged in in the browser). The password of the user.

Note: if you specify an ID and login, the user is logged in with the specified credentials in order to generate the

document, and logged out before the document is returned.

The data model

The data model to pass as value of the dataModel parameter is a JSON string specifying which text blocks are included

and the value of all variables. Variables that are not specified will have an empty string as value.

Note that the variable values are used ‘as is’, they are not formatted in any way, so you should format the values as you

want them to appear in the generated document.

You decide yourself how to build the JSON string. In order to define the format we use the following C# classes:

public class DataModel

{

 public TextBlock[] TextBlockDatas;

 public Variable[] Variables;

}

public class TextBlock

{

 public string Id; // If starts with ’@’ it’s a name.

 public bool Used;

 public int NrInstances;

}

public class Variable

{

 public string Id; // Specify either 'Id' or 'Name'.

 public string Name; // Specify either 'Id' or 'Name'.

TextPlan integration guide

7/11

 public string Value;// The text to appear in the document.

}

The text block data is the same as the TextBlockData class for prepopulating a form, except that the text block’s name

can be specified in the ‘Id’ property, by starting it with a ‘@’. If a text block’s ‘Id’ does not start with a ‘@’ it is a normal

text block ID. Example: “@start” specifies the text block with the original name “start”, while “123” specifies the text

block with the ID “123”.

For variables you should either specify the 'Id' or the 'Name'. If both are specified, 'Id' is used.

The dataModel parameter is a serialized JSON string of an object of type DataModel.

An example of a JSON datamodel is the following:

{

 'TextBlockDatas' : [

 { 'Id' : '1', 'Used' : 'true' },

 { 'Id' : '2', 'Used' : 'false', },

 { 'Id' : '@TextBlock3', 'Used' : 'true' }

],

 'Variables' : [

 { 'Id' : '1', 'Value' : 'value1' },

 { 'Name' : 'Variable2', 'Value' : 'Value2' }

]

}

The JSON string of this datamodel is:

"{'TextBlockDatas':[{'Id':'1','Used':'true'},{'Id':'2','Used':'false',},{'Id':'@Tex

tBlock3','Used':'true'}],'Variables':[{'Id':'1','Value':'value1'},{'Name':'Variable

2','Value':'Value2'}]}"

TextPlan integration guide

8/11

Data collection: send entered form data to your own web service

You can configure your TextPlan form to show a “Send” button, which sends the entered data to an email address

and/or to your own web service, instead of or in addition to the default “Create document” button.

This is configured in the form’s “Form properties” dialog, on the “Data collection” tab. Here you can specify the

following:

 Whether to show the “Send” button for logged-in users and/or for anonymous users.

 The text of the “Send” button.

 An optional description to show before sending. If this is not left blank, the user is first shown a dialog with this

message before actually sending the data.

 Whether the user can download a PDF generated using the sent data.

 Whether a generated PDF is sent alongside the entered data.

 And email address and/or a web service URL where to send the data to.

If an email address is specified, the entered data is emailed in an attachment to that address, in encrypted TextPlan

format. The receiver can save the attached file to his file system, open the corresponding TextPlan form, and load the

data into the form.

If a web service URL is specified, the data is posted in JSON format to the specified URL.

In order to define the format of the data that is sent, we use the following C# classes:

public class WebHookData

{

 public string Key;

 public string Code;

 public bool Test;

 public WebHookTextBlock[] TextBlocks;

 public WebHookVariable[] Variables;

 public string Pdf;

}

public class WebHookTextBlock

{

 public string Id;

 public bool Used;

 public int NrInstances;

}

public class WebHookVariable

{

 public string Id;

 public int Type;

 public string Value; // Text input of the form field.

}

The data that is posted to the web service is a serialized JSON string of an object of type WebHookData.

The properties of the classes WebHookTextBlock and WebHookVariable are as described in the chapter “Prepopulate a

TextPlan integration guide

9/11

TextPlan form with data” for the classes TextBlockData and VariableData.

The other properties of the WebHookData class have the following meaning:

 Key: reserved, currently always “TextPlan”.

 Code:

If the form’s URL contains a “code” parameter, the value of this parameter is passed to the web service.

This can be used to report to the web service which action or customer the data concerns.

For example, if your system provides your customer with a TextPlan form using a public URL, it can append

“&code=<customerId>” to the URL that is provided to the customer. When the customer presses the “Send”

button, “<customerId>” is sent to your web service in the “Code” field.

 Test:

This is set to true if the “Send” button was pressed while the form was in test mode. This is an indication that

your web service should not process the data as production data. A TextPlan account administrator can use test

mode to test the form without being charged for outputs.

 Pdf:

If it is configured in the “Data collection” tab that a generated PDF based on the entered data must also be send,

the PDF file’s data is included in this field, as a Base64-encoded string.

TextPlan integration guide

10/11

Test code
The following HTML file shows how to prepopulate a form with data and how to use TextPlan as a web service.

<!DOCTYPE html>

<!--

 This HTML page shows how to prepopulate a form with data and how to use TextPlan as a web service.

 In this example we use the "Example Appointment" form with the public GUID "fcd286f6-a047-4560-bcaf-

259e3ec99289".

-->

<html>

 <head>

 <meta charset="utf-8" />

 <meta name="viewport" content="width=device-width" />

 <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery/jquery-

1.8.2.min.js"></script>

 </head>

 <body>

 <button type="button" style="width: 300px" onclick="handleOpenTextPlanForm()">Open form with

data</button>

 <button type="button" style="width: 300px" onclick="handleGenerateDocument()">Generate

document</button>

 <form id="formOpenTextPlanForm" method="post" novalidate="novalidate">

 <input id="formOpenTextPlanFormGuid" type="hidden" name="guid"/>

 <input id="formOpenTextPlanFormUserData" type="hidden" name="userData"/>

 </form>

 <form id="formGenerateDocument" method="post">

 <input id="formGenerateDocumentGuid" type="hidden" name="guid"/>

 <input id="formGenerateDocumentDataModel" type="hidden" name="dataModel"/>

 <input id="formGenerateDocumentFormat" type="hidden" name="format"/>

 <input id="formGenerateDocumentTest" type="hidden" name="test"/>

 </form>

 <script type="text/javascript">

 // The public GUID of the form.

 var theGuid = "fcd286f6-a047-4560-bcaf-259e3ec99289";

 // Data to pass to "Create/Form".

 // Note: the text block data for linked and not-repeatable text blocks that are always on

does not have to be specified.

 var thePopulateFormData = "{'TextBlocks':[],'Variables':[{'Id':'1','Type':1,'Value':'John

Smith'},{'Id':'-

1','Type':11,'Value':'Yes'},{'Id':'2','Type':3,'Value':'12012014'},{'Id':'3','Type':1,'Value':'1200'},{'Id':'4',

'Type':1,'Value':'Tessa Yang'}]}";

 // Data to pass to "Create/GenerateOutputDocument".

 // Note: only repeatable text blocks and text blocks that are not used have to be

specified.

 var theGenerateDocumentData = "{'TextBlockDatas':[{'Id':'@No

appointment','Used':false,'NrInstances':-1}],'Variables':[{'Id':'1','Type':1,'Value':'John Smith'},{'Id':'-

1','Type':11,'Value':'Yes'},{'Id':'2','Type':3,'Value':'December 1,

2014'},{'Id':'3','Type':1,'Value':'12:00'},{'Id':'4','Type':1,'Value':'Tessa Yang'}]}";

 function handleOpenTextPlanForm() {

 $("#formOpenTextPlanForm").attr("action", "https://my.textplan.com/Create/Form");

 $("#formOpenTextPlanFormGuid").val(theGuid);

 $("#formOpenTextPlanFormUserData").val(thePopulateFormData);

 $("#formOpenTextPlanForm").submit();

 }

 function handleGenerateDocument() {

 $("#formGenerateDocument").attr("action",

"https://my.textplan.com/Create/GenerateOutputDocument");

 $("#formGenerateDocumentGuid").val(theGuid);

 $("#formGenerateDocumentDataModel").val(theGenerateDocumentData);

 $("#formGenerateDocumentFormat").val(40); // PDF

 $("#formGenerateDocumentTest").val(true);

 $("#formGenerateDocument").submit();

 }

 </script>

 </body>

TextPlan integration guide

11/11

</html>

